Interviewer Effects on Measuring Attitudes

Evidence From a Face-To-Face Survey in Zambia

P. Linh Nguyen <plnguy@essex.ac.uk>

University of Essex / University of Mannheim

Background

Survey

- Survey on financial behaviour & attitudes, as well as standard of living in 2016
- Target: savings group members participating in Rural Finance Expansion Programme
- 2,051 respondents of 529 savings groups (ca. 4 respondents randomly drawn/group)
- 40 interviewers in 11 teams of 5 (15 interviewers worked across teams/provinces)
- Interviewer survey on socio-demographics, survey experience and attitudes

Quasi-interpenetrated design (interviewers are randomly assigned to respondents)

- 0.191
- 0.223
- 0.193
- 0.317
- 0.388
- 0.383
- 0.375
- 0.318
- 0.385
- 0.181
- 0.256

8 districts in Northern, Eastern and Western Province

Gender-of-Interviewer Effects on Trust Questions

Percentages of respondents who do not trust in institutions separated by male (M) and female (F) interviewers.

Hypotheses

1. Different interviewers collect systematically different answers.
2. Even after controlling for respondent-level characteristics (such as age or gender of the respondent), systematic interviewer effects persists.
3. Interviewers’ characteristics (such as age, gender and own attitudes) influence the respondents’ answers systematically.

Model Specification Using Step-Up Approach

Model 1

The response y_{ij} of the i-th respondent being interviewed by a certain interviewer j can be specified in a general model as follows:

$$ y_{ij} = \beta_0 + \beta_1 \cdot \text{district}_{ij} + v_j + \epsilon_{ij} $$

- β_0 is the overall mean for the respondents’ answers;
- β_1 represents the fixed effect of district$_{ij}$ (id);
- $v_j \sim N(0, \sigma_v^2)$ denotes the random intercept associated with interviewer j;
- and $\epsilon_{ij} \sim N(0, \sigma^2)$ represents the residual error at the respondent level.

And it is assumed that $\epsilon_{ij} \perp v_j$.

Model 2

$$ y_{ij} = \beta_0 + \beta_1 \cdot \text{district}_{ij} + \beta_2 \cdot X_{\text{cov}} + v_j + \epsilon_{ij} $$

- X_{cov} represents the vector of the covariates at the respondent level (such as gender and age of the respondent) and β_2 is the fixed effect of all respondent-level covariates.

Model 3

$$ y_{ij} = \beta_0 + \beta_1 \cdot \text{district}_{ij} + \beta_2 \cdot X_{\text{cov}} + \beta_3 \cdot X_{\text{att}} + v_j + \epsilon_{ij} $$

- X_{att} denotes the vector of all covariates at the interviewer level, such as attitudes, gender and age of the interviewer and β_3 is the fixed effect of all interviewer-level covariates.

Future Extensions

1. Expanding interviewer and respondent characteristics (e.g. survey experience, education)
2. Including interviewer-respondent interaction
3. Considering cultural context (e.g. language of interview)
4. Behavioural coding to further explain interviewer variance

Main References & Footnotes

[1] Created with Excel, supported by Bing © GeoNames, Microsoft, Navteq, Wikipedia